Pattern Avoidance in Coloured Permutations
نویسنده
چکیده
Let Sn be the symmetric group, Cr the cyclic group of order r, and let S (r) n be the wreath product of Sn and Cr; which is the set of all coloured permutations on the symbols 1, 2, . . . , n with colours 1, 2, . . . , r, which is the analogous of the symmetric group when r = 1, and the hyperoctahedral group when r = 2. We prove, for every 2letter coloured pattern φ ∈ S 2 , that the number of φ-avoiding coloured permutations in S n is given by the formula ∑n j=0 j!(r − 1) ( n j )2. Also we prove that the number of Wilf classes of restricted coloured permutations by two patterns with r colours in S (r) 2 is one for r = 1, is four for r = 2, and is six for r ≥ 3.
منابع مشابه
Some Combinatorics Related to Central Binomial Coefficients: Grand-Dyck Paths, Coloured Noncrossing Partitions and Signed Pattern Avoiding Permutations
We give some interpretations to certain integer sequences in terms of parameters on Grand-Dyck paths and coloured noncrossing partitions, and we find some new bijections relating Grand-Dyck paths and signed pattern avoiding permutations. Next we transfer a natural distributive lattice structure on Grand-Dyck paths to coloured noncrossing partitions and signed pattern avoiding permutations, thus...
متن کاملAscent-Descent Young Diagrams and Pattern Avoidance in Alternating Permutations
We investigate pattern avoidance in alternating permutations and an alternating analogue of Young diagrams. In particular, using an extension of Babson and West’s notion of shape-Wilf equivalence described in our recent paper (with N. Gowravaram), we generalize results of Backelin, West, and Xin and Ouchterlony to alternating permutations. Unlike Ouchterlony and Bóna’s bijections, our bijection...
متن کاملBeyond Alternating Permutations: Pattern Avoidance in Young Diagrams and Tableaux
We investigate pattern avoidance in alternating permutations and generalizations thereof. First, we study pattern avoidance in an alternating analogue of Young diagrams. In particular, we extend Babson-West’s notion of shape-Wilf equivalence to apply to alternating permutations and so generalize results of Backelin-West-Xin and Ouchterlony to alternating permutations. Second, we study pattern a...
متن کاملAVOIDANCE OF PARTIALLY ORDERED PATTERNS OF THE FORM k-σ-k
Sergey Kitaev [4] has shown that the exponential generating function for permutations avoiding the generalized pattern σ-k, where σ is a pattern without dashes and k is one greater than the largest element in σ, is determined by the exponential generating function for permutations avoiding σ. We show that the exponential generating function for permutations avoiding the partially ordered patter...
متن کاملStatement of Research Interests
My research interests lie in the areas of enumerative and algebraic combinatorics. In particular, I am studying pattern avoidance for affine permutations and its applications. For many years, many mathematicians have studied pattern avoidance in permutations. Sometimes the questions are as simple as, ”How many permutations avoid a given set of patterns?” For example, the number of permutations ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001